Jointure G2 de deux courbes par une courbe de Bézier rationnelle à points massiques de contrôle
1 : L.I.B.
* : Auteur correspondant
L.I.B., Université de Bourgogne Franche-Comté
Cet article s'intéresse aux jointures entre deux courbes données par une courbe de Bézier rationnelle quintique à points massiques de contrôle. Pour ce faire, les propriétés différentielles de ces courbes de Bézier fournissent les formules de calcul des courbures en 0 et 1 ainsi que le cercle osculateur idoine. Chaque jointure présente deux degrés de liberté où deux points appartiennent chacun à une droite. Si la jointure G2 est aussi une jointure C2 alors la solution est unique. Après le cas d'école d'une jointure entre un cercle et une droite et en guise d'illustration des résultats, deux exemples de jointures entre les boucles d'un Folium de Descartes et d'une Lemniscate de Bernouilli sont présentés aux lecteurs.